翻訳と辞書
Words near each other
・ Chaska, Minnesota
・ Chaske Spencer
・ Chaskel
・ Chaskel Besser
・ Chaskhar Gewog
・ Chaski (Latin American folk music ensemble)
・ Chasle LMC-1 Sprintair
・ Chasle Tourbillon
・ Chasle YC-10 Migrateur
・ Chasle YC-100 Hirondelle
・ Chasles
・ Chasles' theorem
・ Chasles' theorem (geometry)
・ Chasles' theorem (gravitation)
・ Chasles' theorem (kinematics)
Chasles–Cayley–Brill formula
・ Chasm (Delta-S album)
・ Chasm (disambiguation)
・ Chasm (Ryuichi Sakamoto album)
・ Chasm (song)
・ Chasm City
・ Chasm Creek Formation
・ Chasm Falls
・ Chasm Provincial Park
・ Chasma
・ Chasma Boreale
・ Chasmagnathus
・ Chasmanthe
・ Chasmanthe bicolor
・ Chasmanthe floribunda


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chasles–Cayley–Brill formula : ウィキペディア英語版
Chasles–Cayley–Brill formula
In algebraic geometry, the Chasles–Cayley–Brill formula (also known as the Cayley-Brill formula) states that a correspondence ''T'' of valence ''k'' from an algebraic curve ''C'' of genus ''g'' to itself has ''d'' + ''e'' + 2''kg'' united points, where ''d'' and ''e'' are the degrees of ''T'' and its inverse.
Michel Chasles introduced the formula for genus ''g'' = 0, Arthur Cayley stated the general formula without proof, and Alexander von Brill gave the first proof.
The number of united points of the correspondence is the intersection number of the correspondence with the diagonal Δ of ''C''×''C''.
The correspondence has valence ''k'' if and only if it is homologous to a linear combination ''a''(''C''×1) + ''b''(1×''C'') – ''k''Δ where Δ is the diagonal of ''C''×''C''. The Chasles–Cayley–Brill formula follows easily from this together with the fact that the self-intersection number of the diagonal is 2 – 2''g''.
==References==

*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chasles–Cayley–Brill formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.